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Abstract
The spin-mixing conductance of a thin ferromagnetic layer attached epitaxially
to two semi-infinite non-magnetic metallic leads is formulated in terms of non-
equilibrium Green’s functions. The spin-mixing conductance is obtained as
a response of the spin torque acting on the ferromagnet with respect to the
spin accumulation in one of the leads, while the spin torque is defined as a
time derivative of the spin magnetic moment. The equivalence of the derived
formula with a previous expression of the Landauer–Büttiker scattering theory is
sketched and an implementation within the ab initio tight-binding linear muffin-
tin orbital method is briefly described. Applications are made for metallic
Co- and Ni-based slabs embedded between Cu(111) leads and for half-metallic
Co2MnSi films sandwiched by Cr(001) leads. The calculated results throw
serious doubts on the general validity of two features: fast convergence of
the spin-mixing conductance with increasing thickness of the magnetic layer
and negligible values of the imaginary part of the spin-mixing conductance as
compared to the real part.

1. Introduction

Artificially prepared metallic magnetic multilayers and spin valves attract ongoing interest due
to a unique interplay between their magnetic structure and transport properties [1, 2], especially
in the current perpendicular to the planes (CPP) geometry. This was manifested by the well-
known giant magnetoresistance effect [3] and by more recent investigations of current-induced
magnetization switching [4–7].

Probably the most successful phenomenological framework for quantitative understanding
of both phenomena is the Valet–Fert model [8], based on the linearized Boltzmann equation.
The description of the CPP transport in collinear spin structures within this scheme leads to a
semiclassical concept of the spin accumulation in non-magnetic layers, i.e., to a difference of
effective chemical potentials (Fermi levels) for electrons in the two spin channels. A recent
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generalization of the Valet–Fert model to non-collinear spin structures [9–11] employs two
properties of spin currents. First, the transverse (perpendicular to the local exchange field)
component of the spin current inside a ferromagnet becomes rapidly damped over a typical
distance of a few interatomic spacings [12]. This very short magnetic coherence length is
the result of a large exchange splitting which leads to mostly destructive interference effects
due to all contributions of wavevectors on the two Fermi surfaces of the ferromagnetic metal.
Consequently, the spin torque experienced by a ferromagnetic (FM) layer can be identified
with the transverse spin current at its interface with a neighbouring non-magnetic (NM)
layer. Second, the proper boundary conditions that are inevitable for a full solution of the
diffusion equations must be formulated in terms of spin-mixing conductances of individual
interfaces [13]. The latter (complex) quantities together with the spin-resolved interface
conductances provide complete information on a linear response of the currents and spin
currents at an interface due to the bias and the spin accumulation deep inside the adjacent
materials. The spin-mixing conductances are indispensable also for the magnetoelectronic
circuit theory of non-collinear magnetic systems [13–15].

Several authors have addressed the properties of a single NM/FM interface [12, 16], with
emphasis put on the conductances and their sensitivity, e.g., to interface alloying. Since the
traditional Landauer–Büttiker scattering theory [17] has been used in the majority of papers,
the effect of disorder was included by a supercell technique [15, 18].

The spin-mixing conductances of FM layers of a finite thickness attached to two NM leads
have been studied very recently for Co/Cu, Fe/Au and Fe/Cr systems [19]. It has been found that
the thickness dependence of the real part of the spin-mixing conductance saturates very rapidly
for thicker layers; this behaviour is equivalent to the very short magnetic coherence length, and
it proves that the spin-mixing conductance is predominantly an interface property. However,
this may not hold for other ferromagnets, such as Ni and Ni-based alloys or the diluted magnetic
semiconductors (Ga, Mn)As [10], where the average exchange splitting is rather weak. For
systems investigated so far, the imaginary part of the spin-mixing conductance was found to
be appreciably smaller than the real part [16, 19]. This property has been employed as an
assumption in a number of theoretical studies [9, 10, 19, 20]; its validity, however, has to be
checked in each particular case.

The present paper serves two main purposes. First, we consider an FM layer
embedded between two NM metallic leads with epitaxial interfaces and give a general
theoretical formulation of the spin torque due to the spin accumulation in one of the leads
(section 2.1). We use the language of non-equilibrium Green’s functions (NGFs) [17, 21] as
an alternative to the scattering theory. We also briefly describe a numerical implementation
within the first-principles tight-binding linear muffin-tin orbital (TB-LMTO) method [22, 23]
(section 2.2). The method has recently been combined with the coherent potential
approximation (CPA) [23–25] for the collinear CPP transport in disordered multilayers [26],
and we employ the same configuration averaging here. Second, we perform calculations
for systems based on pure elemental metals (Cu, Co, Ni) including a random binary alloy
Ni0.84Fe0.16 (permalloy, Py) (section 3.1). We also report the results for slabs of a half-metallic
ferromagnet Co2MnSi (section 3.2) and interpret them in terms of a free-electron model of an
interface between an NM metal and an FM half-metal (section 3.3).

2. Theory

2.1. General formulation of the spin-mixing conductance

We consider an NM/FM/NM system with non-interacting electrons. Its effective one-electron
Hamiltonian H can be written as
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H = H0 + γ (σ · n), (1)

where H0 represents a spin-independent part, γ is the exchange splitting, which is non-zero
only inside an intermediate region containing the FM layer and narrow parts of the two adjacent
semi-infinite NM leads, the vector σ = (σx , σy, σz) denotes a vector of the Pauli matrices,
and the unit vector n defines the direction of the exchange field of the FM layer. The spin
dependence of the Hamiltonian H in (1) implies that electrons with spin parallel and antiparallel
to n experience Hamiltonians H↑ = H0 + γ and H↓ = H0 − γ , respectively.

We define the spin torque τ as the time derivative of the total spin magnetic moment. The
latter operator is represented by the Pauli matrices σ , so that

τ = −i[σ , H ], (2)

where atomic units (h̄ = 1) are used. Note that this definition of the spin torque is formally
different from (but physically equivalent to) the formulation based on spin currents on both
sides of the FM layer [4, 27]. The well-known algebraic rules for the Pauli matrices yield an
explicit form of the torque operator

τ = 2γn × σ , (3)

which shows that τ is a local operator that is non-zero only inside the intermediate region; its
direction is perpendicular to the FM exchange field.

The thermodynamic average of the spin torque τ for the NM/FM/NM system in a
stationary non-equilibrium state is given by [17, 21]

τ̄ = 1

2π

∫ ∞

−∞
Tr{τ G<(E)} dE, (4)

where G<(E) is the lesser component of the non-equilibrium Green’s function. The latter
quantity is related to the retarded and the advanced Green’s functions, Gr(E) and Ga(E),
respectively, by means of

G<(E) = Gr(E)�<(E)Ga(E), Gr,a(E) = [E − H − �r,a(E)]−1, (5)

where �<(E), �r(E) and �a(E) denote the lesser, the retarded and the advanced components
of the selfenergy, respectively. Note that all operators in (4) and (5) are defined in the Hilbert
space of the intermediate region.

The spin accumulation in the NM leads results in a change of the lesser selfenergy δ�<(E)

(see below) which induces a first-order change of the average torque (4):

δτ̄ = 1

2π

∫ ∞

−∞
Tr{Ga(E)τGr(E)δ�<(E)} dE . (6)

The special form of the torque operator (2) together with the expression for Gr,a(E) (5) provide
a relation

Ga(E)τGr(E) = −i[σGr(E) − Ga(E)σ ] + Ga(E)σ�(E)Gr(E), (7)

where we have introduced an abbreviation for the antiHermitean part of the selfenergy, namely

�(E) = i[�r(E) − �a(E)]. (8)

In deriving (7), use was made of the fact that the selfenergies of the unperturbed NM leads are
spin-independent, so that [σ ,�r,a(E)] = 0.

The total selfenergies can be written as sums of separate contributions due to the left (L)
and the right (R) leads,

�<(E) = �<
L (E) + �<

R(E), �r,a(E) = �
r,a
L (E) + �

r,a
R (E). (9)

3
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For stationary non-equilibrium systems without spin accumulation, the lesser selfenergies are
given by

�<
L,R(E) = fL,R(E)�L,R(E), �L,R(E) = i[�r

L,R(E) − �a
L,R(E)], (10)

where the functions fL,R(E) refer to the Fermi–Dirac distributions of the two leads. Note that
�(E) = �L(E) + �R(E).

In the thermodynamic equilibrium, the distributions fL,R(E) coincide with the Fermi–
Dirac distribution of the whole system. In the presence of spin accumulation in one of the leads
(L), the system is driven out of equilibrium by adding a spin-dependent shift δEL to the Fermi
energy of the lead. This yields the first-order change of �<(E):

δ�<(E) = δ�<
L (E) = f ′(E)(σ ·a)�L(E)δEL, (11)

where f ′(E) means the derivative of the Fermi–Dirac distribution and a is a unit vector
pointing in the direction of the spin accumulation. For systems at zero temperature, which
will be considered in the following, f ′(E) = −δ(E − EF), where EF is the Fermi energy.
Substitution of (7) and (11) into (6) provides a starting expression for the corresponding
response coefficient CL:

CL ≡ δτ̄

δEL
= 1

2π
Tr[i(σ Gr − Gaσ )(σ ·a)�L − σ�Gr(σ ·a)�LGa], (12)

where all omitted energy arguments equal the Fermi energy EF.
In order to extract the dependence of the response coefficient CL on the orientation of the

spin accumulation a and the magnetization direction n, the explicit structure of the Green’s
functions Gr,a of the Hamiltonian (1) with respect to the spin must be used,

Gr,a = Gr,a
↑ + Gr,a

↓
2

+ Gr,a
↑ − Gr,a

↓
2

(σ ·n), (13)

where the spin-resolved Green’s functions are defined by

Gr,a
s (E) = [E − Hs − �r,a(E)]−1, s = ↑,↓ . (14)

The substitution of (13) into (12) reduces its right-hand side to a sum of terms of the form
Tr(ξ X) = trS(ξ) tr(X), where ξ is a matrix in the spin indices only while X is a matrix in
the other (site and orbital) indices and where the symbols trS and tr denote the respective trace
operations. Further steps employ trace relations:

trS[σ (σ ·a)] = 2a, trS[σ (σ ·n)(σ · a)] = 2in × a,

trS[σ (σ ·n)(σ ·a)(σ · n)] = 4(n ·a)n − 2a.
(15)

The resulting expression for CL follows after a lengthy but straightforward manipulation:

CL = D1a + D2a × n − D3(n ·a)n, (16)

where the prefactors D1, D2 and D3 are given by

D1 = 1

2π
tr[i(Gr

↑ + Gr
↓ − Ga

↑ − Ga
↓)�L − �Gr

↑�LGa
↓ − �Gr

↓�LGa
↑],

D2 = 1

2π
tr[(Gr

↑ − Gr
↓ + Ga

↑ − Ga
↓)�L + i(�Gr

↑�LGa
↓ − �Gr

↓�LGa
↑)],

D3 = 1

2π
tr[�(Gr

↑ − Gr
↓)�L(Ga

↑ − Ga
↓)].

(17)

The form of (16) can be simplified by using a general relation

i[Gr(E) − Ga(E)] = Ga(E)�(E)Gr(E) (18)
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that follows from (5) and (8). After inserting the spin-resolved counterparts of (18), i(Gr
s −

Ga
s) = Ga

s�Gr
s (s = ↑,↓), in the expression (17) for D1, one obtains D3 = D1. The previous

formula (16) for the response coefficient CL can thus be rewritten as

CL = D1n × (a × n) + D2a × n, (19)

i.e., in a form explicitly perpendicular to the vector n; see the text after (3).
A closer inspection of the real quantities D1 and D2 (17) reveals their simple relation to a

single complex quantity—the spin-mixing conductance Cmix
L :

Cmix
L = 1

2π
tr[i(Gr

↑ − Ga
↓)�L − �Gr

↑�LGa
↓], (20)

which yields

D1 = 2 Re Cmix
L , D2 = 2 Im Cmix

L . (21)

Note that the usual spin-resolved charge conductances (in units of e2/h̄) are given by

Cs = 1

2π
tr(�RGr

s�LGa
s), s = ↑,↓ . (22)

The real part of Cmix
L is positive, as can be shown from its relation to the prefactor D3,

see (17) and the text after (18), and from the positive definiteness of the operators �L,R. The
formulae (19)–(21) represent the central result of this section.

The derived dependence of the spin torque (19) on the orientation of the unit vectors a
and n is identical to that obtained within the Landauer–Büttiker theory [15]. In order to
compare the latter to the NGF approach more explicitly, let us consider the simplest case of
a one-dimensional NM/FM/NM system with one propagating mode in identical NM leads.
It can be shown that the spin-resolved charge conductances (22) for this system are equal to
Cs = |ts |2/(2π), while the spin-mixing conductance (20) is given by

Cmix
L = 1

2π
(1 − r↑r∗

↓) − 1

2π
t↑t∗

↓, (23)

where ts and rs denote respectively the spin-resolved transmission and reflection coefficients of
the wave incoming from the left lead. This result proves an equivalence of the developed NGF
approach and the Landauer–Büttiker formalism [15]. In particular, the first term in (23) was
identified with the spin-mixing conductance of a single NM/FM interface [13, 14, 16] while
the second term due to the transmitted electrons appeared naturally for FM layers of a finite
thickness [15, 19, 20, 27, 28]. The possible presence of several propagating modes in the leads
can be taken into account by double summations over these channels in (23), as explained in
detail in [14, 15, 19].

2.2. Implementation and computational details

The formalism of section 2.1 is well suited for implementation within the ab initio TB-
LMTO method in the atomic sphere approximation [22, 23, 29]. Since details of this
technique including calculations of the transport properties have recently been described in
the literature [26, 30–33], we display here only the final TB-LMTO formula for the spin-
mixing conductance Cmix

L (20). Its value per two-dimensional (2D) unit cell of an epitaxial
NM/FM/NM system is given by

Cmix
L = 1

2π

1

N‖
tr[i(gr

↑ − ga
↓)BL − (BL + BR)gr

↑BLga
↓], (24)

where N‖ refers to a large number of 2D cells in directions parallel to atomic layers and the trace
is taken over the site and the orbital indices of the intermediate region. The quantities gr

s and ga
s

5
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Figure 1. Spin-mixing conductances Cmix
L of fcc(111) systems as functions of the magnetic film

thickness: (a) Cu/Ni/Cu (�,�) and Cu/Co/Cu (•,◦), and (b) Cu/Ni/Cu (�,�) and Cu/Py/Cu
(�,
). The filled and the empty symbols denote respectively the real and the imaginary parts of
Cmix
L .

(s = ↑,↓) denote spin-resolved auxiliary Green’s function matrices calculated respectively at
energies EF + iη and EF − iη, where η → 0+. The spin-independent matrices BL,R correspond
to antiHermitean parts of selfenergies of the NM leads [26, 30]. In the principal-layer technique
employed here, the intermediate region consists of N principal layers and the matrices BL and
BR are localized in the first and in the N th principal layer, respectively.

For epitaxial systems with perfect 2D translational symmetry, the evaluation of (24)
rests on the lattice Fourier transformation of the involved matrices. For FM layers with
substitutional disorder, attached to non-random NM leads, the CPA is used for configurational
averaging [23, 29]. The CPA-vertex corrections due to the second term in (24) are formulated
and calculated according to [26].

The systems studied in section 3 were based on face-centred cubic (fcc) and body-centred
cubic (bcc) lattices with neglected lattice relaxations. One principal layer was formed by one
atomic layer for fcc(111) stacking (section 3.1) while two neighbouring atomic layers per
principal layer were taken for bcc(001) stacking (section 3.2). The imaginary parts of energies
for conductance calculations were set η = 10−7 Ryd while evaluation of the trace in (24)
employed k‖-mesh densities equivalent to 5000 sampling points in a 2D Brillouin zone of the
1 × 1 unit cell of the NM leads.

3. Results and discussion

3.1. Co- and Ni-based metallic layers attached to Cu(111) leads

The calculated spin-mixing conductances of Cu/Co/Cu(111), Cu/Ni/Cu(111) and
Cu/Py/Cu(111) systems are shown in figure 1 as functions of the thickness (in monolayers,
ML) of the magnetic films. The values and the trends of Cmix

L for the Cu/Co/Cu system (fig-
ure 1(a)) are in reasonable agreement with results of a previous study [19]: the thickness de-
pendence exhibits small oscillations that however decay rapidly with increasing Co thickness,

6
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Figure 2. Band structure of the full-Heusler compound Co2MnSi in the spin-↑ (left panel) and the
spin-↓ (right panel) channels.

and the imaginary part of Cmix
L is at least an order of magnitude smaller than the real part; the

only exception represents the thinnest Co film (2 ML) considered. This behaviour is typical
for metallic ferromagnets with a strong exchange splitting which leads to large differences be-
tween the spin-↑ and spin-↓ Fermi surfaces and to cancellation of phase factors for different
k‖-vectors [15, 19].

The oscillations of Cmix
L in the Cu/Ni/Cu system have bigger amplitudes and a slower decay

with increasing Ni thickness as compared to the Cu/Co/Cu case (figure 1(a)). This behaviour
can be ascribed to different magnitudes of the exchange splitting: that of Ni is significantly
smaller than that of Co. Since these oscillations arise due to quantum interference effects, they
can be strongly reduced by impurities in the FM film. This is documented by spin-mixing
conductances of the Cu/Py/Cu system (figure 1(b)): the random Fe atoms suppress any long-
range oscillations and the asymptotic value of Cmix

L is achieved practically for Py thickness of
10 ML.

3.2. Half-metallic Co2MnSi layers attached to Cr(001) leads

The ferromagnetic full-Heusler compound Co2MnSi with the L21 structure represents a
promising material for spintronics applications due to its high Curie temperature of 985 K [34]
and due to recent predictions [35, 36] and experimental verification [37] of its half-metallic
nature.

The self-consistent electronic structure of bulk Co2MnSi, calculated by means of the TB-
LMTO method for an experimental value of the fcc lattice parameter [34], is presented in
figures 2 and 3. The narrow band gap in the spin-↓ channel (figure 2) is 0.43 eV wide, and the
alloy Fermi energy EF is located only 0.05 eV below the conduction band, in rough agreement
with measurements indicating the width of the band gap of 0.35–0.40 eV and a tiny separation
of 0.01 eV between the EF and the bottom of the conduction band [37]. The shape of the spin-
polarized densities of states (figure 3) and the total spin moment of 5 μB per formula unit agree
well with previous full-potential calculations [36].

The CPP transport properties were studied for (001) slabs of the Co2MnSi compound
sandwiched by non-magnetic Cr bcc(001) leads, as motivated by an epitaxially prepared
Cr/Co2MnSi interface [37]. All atoms were placed at sites of an ideal bcc lattice which required
a small (∼2%) compression inside the Cr leads as compared to an equilibrium Cr bcc structure.
The Co2MnSi slabs comprised an even number of atomic layers; the pure Co-layer and the
MnSi-layer were adjacent to the left and the right Cr lead, respectively.

7
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Figure 3. Spin-resolved densities of states (per formula unit) of the bulk full-Heusler compound
Co2MnSi.

Figure 4. Transport properties of Cr/Co2MnSi/Cr(001) as functions of the Co2MnSi thickness:
(a) the spin-↑ (�) and the spin-↓ (�) conductances, and (b) the real (•) and the imaginary (◦)
parts of the spin-mixing conductance.

The calculated transport properties are summarized in figure 4 as functions of the Co2MnSi
thickness. The spin-resolved conductances (figure 4(a)) reflect a metallic regime in the spin-↑
channel, whereas a tunnelling regime is clearly observed in the spin-↓ channel. Note that a full
spin polarization of the current is obtained very quickly with increasing Co2MnSi thickness,
despite the small energy separation between the Fermi energy and the bottom edge of the
spin-↓ conduction band in the bulk compound.

The thickness dependence of the spin-mixing conductance (figure 4(b)) exhibits a nearly
constant value with superimposed small oscillations due to quantum-size effects, in analogy
to the case of a metallic FM film with a strong exchange splitting, such as Cu/Co/Cu(111)
(section 3.1). However, the imaginary part of Cmix

L acquires values as high as one half of the
real part in the case of Cr/Co2MnSi/Cr(001). Such a high value of the imaginary part of

8
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Figure 5. Free-electron model of an interface between a non-magnetic metal and a half-metallic
ferromagnet: (a) energy-dependent reflection coefficients in the spin-↑ channel for the potential
U = −EF (——) and in the spin-↓ channel (real part, — · —, and imaginary part, - - - -), and
(b) the spin-mixing conductance as a function of the spin-↑ potential U (real part, ——, and
imaginary part, - - - -).

the spin-mixing conductance has not been encountered in metallic NM/FM and NM/FM/NM
systems [15, 16, 19]; this new feature thus calls for an explanation based on the underlying
electronic structure.

3.3. Spin-mixing conductances in a free-electron model

In order to explain the unexpected properties of the spin-mixing conductance in presence of
a half-metallic FM film qualitatively, let us consider the simplest free-electron model of the
NM/FM/NM system that was used by several authors in the past [12, 19]. Since the spin-↓
channel is in a tunnelling regime, the transmitted electrons contribute negligibly to Cmix

L , and
we can thus reduce the problem to the contribution of reflected electrons, described by the first
term in (23), at a single interface of two semi-infinite parts.

Let us denote the spin-resolved values of the constant potential in the FM part as Us

(s = ↑,↓) while the constant potential inside the NM part is set to zero. The reflection
coefficients for electrons with a kinetic energy E > 0 in the NM part are given by

rs(E) = 1

Us
[2E − Us − 2

√
E(E − Us)], s = ↑,↓, (25)

where
√

E(E − Us) ≡ i
√

E(Us − E) for E < Us . The electron motion in two directions
parallel to the interface leads to the energy E varying between zero and the Fermi energy EF

(EF > 0). The spin-mixing conductance then acquires a form

Cmix
L

CSh
= 1

EF

∫ EF

0
[1 − r↑(E)r∗

↓(E)] dE, (26)

where CSh is the Sharvin conductance of the NM metal (per spin channel); the energy
integration in (26) corresponds to an integration over the k‖-vector. In order to make the model
appropriate to the Cr/Co2MnSi system (section 3.2), we identify the bottom of the spin-↓ band
with the Fermi energy, U↓ ≡ EF, and study the spin-mixing conductance as a function of an
attractive spin-↑ potential U↑ ≡ U < 0.

9
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An analysis of the model proves that the rs(E) (25) are real for s = ↑ and complex for
s = ↓ (for energies 0 < E < EF), see figure 5(a), and they do not cause any destructive
interference effects in the imaginary part of Cmix

L (26). The latter can thus reach non-negligible
values with respect to the real part of Cmix

L ; see figure 5(b).

4. Conclusions

We have presented a formulation of the spin-mixing conductance of a thin ferromagnetic
film attached to non-magnetic leads based on non-equilibrium Green’s functions. We have
implemented the derived formula in an ab initio technique and combined it with the coherent
potential approximation. The first applications of the developed scheme revealed that the
spin-mixing conductance of the Cu/Ni/Cu(111) system exhibits pronounced oscillations as a
function of Ni thickness due to quantum-size effects and a weak exchange splitting of Ni. The
spin-mixing conductance of the Cr/Co2MnSi/Cr(001) system possesses a surprisingly high
imaginary part; this unusual feature can be understood on the basis of reflection coefficients
in a free-electron model of an interface between a non-magnetic metal and a ferromagnetic
half-metal.
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